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I. Statement of Work

Generally a missile is called a cruise missile if its speed is subsonic, if it uses a built—in
global positioning navigation system (GPS/INS), and if its range is at least several
hundred miles. A specific mission for a cruise missile is programmed by specifying a
sequence of waypoints and including any TERCOM maps that are available. The
missile uses its on—board computational facilities and its GPS/INS system to guide it to
its target.

During the 1990s, cruise missiles launched from ships and submarines were used with
great success in the Persian Gulf. Targets which may be hundreds of miles inland have
been successfully attacked by these Navy weapons stationed in relatively safe positions
offshore. In addition, cruise missiles have been used to disable SAM sites, making
manned aircraft strikes safer.

By representing threat regions as circles, the problem of developing a single mission for
a single cruise missile can be viewed as a computational geometry problem in which we
seek a path composed of line segments from a launch site to a target site which skirts
selected threat regions. Using current technology, missions are developed using a
two—step process. In the first step, a mission planner uses a two—dimensional map to
manually select a path from a launch site to the target. In the second step a software
system includes the vertical dimension and develops an estimate of the probability of a
successful mission. This process may be repeated several times until the mission
planner is satisfied with the mission plan. In this research, we present three algorithms
designed to help automate the first step of the mission planning process.



II. Finding Safe Paths

In this study, we lay a grid over the military theatre of interest and create a grid graph
[N, A]. The pointss € N and t € N are defined to be the grid points nearest the missile
and target, respectively. For each edge we define a traversal probability. Traversal
probabilities within a threat region are set to values which are proportional to the
distance from the midpoint of an edge to the center of the threat. Edges which are
outside the threat regions have traversal probabilities very close to 1. By applying a
slight modification of Dijkstra’s algorithm, we can easily find the safest path fromstot.
The set of nodes which appear in near—optimal safe paths has been called the safe
corridor. This manuscript (which appears in Appendix A) presents a proof of
correctness for both the problem of finding the safest path and the problem of finding a
safe corridor in a grid graph.



III. Grid—Free Algorithms

In this study, we present a new simple, yet surprisingly effective algorithm that
automatically finds a path from the launch site to the target site which avoids all threats
and does not require the use of a grid. The circumscribed triangle algorithm constructs
a mission by moving from a given waypoint tangentially to the circumference of nearby
threat regions. These directions are determined by constructing a circumscribed
triangle around a threat region. This basic strategy is embedded within an efficient
branch—and—bound framework. On twenty randomly generated test problems, this
algorithm worked extremely well in all cases. This study is documented in Appendix B.



IV. Mission Planning With A Probability Side Constraint

After consultation with analysts at the Naval Surface Warfare Center at Dahlgren,
Virginia, we discovered that real mission plans frequently penetrate enemy threat
regions. In this investigation, we extended the circumscribed triangle algorithm to
incorporate a side constraint on the probability of a successful traversal. This allows the
missile to take short cuts through threat regions, as long as the probability of success
meets some user—specified criteria. This work is documented in Appendix C.
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Finding Safe Paths in Networks
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Abstract

The problem of constructing strike plans for cruise missiles motivated the
formulation of two new graph problems: the safest path problem and the safe
corridor problem. The idea is to construct a flight path for a cruise missile
through a military theatre which results in a high probability of mission
success. Exact algorithms for bpth problems are presented along with a proof
of correctness. The notion of a safe corridor is illustrated on several randomly
generated strike planning problems involving a single cruise missile and a
single target protected by several surface-to-air missile sites. The network is

defined by a grid graph over the terrain of interest.
Acknowledgement
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1 Introduction

Let G = [N, A] be a directed graph consisting of a set N of nodes and a set
A of arcs whose elements are ordered pairs of distinct nodes. A directed path
in G from node s to node ¢ is an alternating sequence of nodes and arcs from
G of the form Py = {s = 11, (i1,%2),%2, (22,23)5 23y ovy Tk=1, (Tk=1, 1k )y 1k = t}.
Let p;; denote the probability of a safe traversal over the arc (i,j). Then
the probability of a safe traversal over the directed path Py is given by
DiyisPigiz---Dir_yir- Given s € N and t € N, the safest path problem is to find
a directed path in G having the largest probability of safe traversal. Given
R <1,s€ Nandte N, the safe corridor problem is to find the set of nodes
C € N such that for each n € C there exists a path containing » whose
traversal probability is at least Rp", where p~ is the traversal probability of
the safest path in G.

The objective of this investigation is to develop an efficient algorithm for
the safest corridor problem and demonstrate how this can be used to plan
flight paths for cruise missiles. The safe corridors generated allow a mission
planner to develop flight paths which maximize mission success.

The safest path problem is closely related to the classical shortest path
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problem which is discussed in numerous books (see for example [1, 2, 3, 7,
10, 11, 12, 13, 14, 18]). Excellent surveys of the many shortest path problem
variations may be found in {3, 8, 9]. The idea of a safe corridor was first
introduced to the authors by Solka and Rogers [15], who were developing a
safe corridor using Dijkstra’s shortest path algorithm. Parallel versions of

their algorithms may be found in [16, 17].

2 The Safest Path Algorithm

The safest path algorithm presented in this section is a straight-forward adap-
tation of Dijkstra’s classical algorithm [6] for the one-to-one shortest path
problem. The input is a directed graph [V, A] with node set N = {1,2,...,n}
and arc set A. Associated with each arc (¢,7) is the probability of a suc-
cessful traversal, pi;. A safest path is desired from the origin s € N to the

destination ¢t € N, and it is assumed that a path from s to ¢ exists.

2.1  The Algorithm

The safest path algorithm begins at node s and constructs a safest path tree

T in which the safest path from s to any node in T is known. When node ¢
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is placed in the tree we have a safest path from s to t and the algorithm ter-
minates. The algorithm uses two working arrays and working sets S which
contain the nodes inthe current T at iteration k. The array d; denotes the
probability of traversal from s to j and the array b; denotes the predecessor
of node j, i.e. if (¢,7) € T, then b; = i. At each iteration, T is enlarged by
one node, i.e. |Sk| = k. Hence, in at most |N| iterations the algorithm will

terminate.

Algorithm : safest path
Inputs: N, A,s,t,pi;
Outputs : T, b; for all nodes j € T, and d;
Assumption : There exists a path from s to t in [V, A].
begin

So—0;, ke0

dj — —1foraljeN;

while ¢ ¢ Si do
begin

select iy € N\Si such that Vj € N\Si, &, > dj;
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Sk — Sk U {it}; Ee—k+1;
for all j € N\Sk such that (i,7) € A do
begin
if d; <dip;,;then d; —d;p;;; b —ix;
end;
end;
end;
An algorithm for the one-to-all safest path problem can be obtained by mod-

ifying the termination criterion to “while N\S; == § do.”

2.2 Correctness of the Algorithm

In this section we show that the safest path algorithm terminates with the
correct solution. The proof is based on induction and relies on the fact that

the safest path from s to every node in the safest path tree is known.

Theorem. When the safest path algorithm terminates, d; is the probability

of the safest path from s to ¢ in [N, AJ.

Proof. We proceed by finite induction using the predicate
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P(m): (a) forall: € S, d; is optimal with an optimal path
from s to 7 lying in S,,, and
(b) for all j € N\S,, with d; >0, d; is the largest
traversal probability for a path from s to 7 in which
all nodes except j lie in Sp,, and such a path can be
decomposed into a subpath from s to b; and the

subpath consisting of b; followed immediately by j.

When So =0, only d; > 0. So S; = {s} and d, = 1. Since any path with
probability 1 must be optimal, d, is optimal and the degenerate optimal path
from s to s lies in S;. Thus (a) holds. Aiso, the only path from s to a node
7 in N\S; consists of s and the arc connecting s to 7. For any such point j,
d; was set to ds;ps; = psj, the traversal probability associated with the only
path from the single node s of S; to j, using only b; = s and j. So (b) holds.
Thus P(1) is true.

Let k be an arbitrary fixed integer such that 1 < k < n. Assume that
P(1),...,P(k) are all true. Consider Si41 and ix € Sk41\Sk. Since P(k) is
true, d; is optimal for all 7 € Sk, and optimal paths from s to those nodes

also lie in S;. Let P, be the path from s to i;, with traversal probability po,
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consisting of the path from s to b;, followed immediately by ;.

Suppose (a) does not hold for Syy;. It must be that there is a path P,
from s to i with traversal probability p, > d;.. Furthermore, this path must
contain at least one node of N\.S'H.lA. Let g be the first node of N\S;,; on
path P, so that P; decomposes into two subpaths P, from s to q and Ps
from ¢ to i;. Let p; and p; be the traversal probabilities of paths P; and Ps,
respectively. All nodes of P, except g lie in Si. So by (b), d; is the largest
traversal probability for a path from s to ¢ in which all nodes except ¢ lie in
Sk. But when 7; was selected, di, 2 dg. So py = pops < dgps < di,ps < d;,
a contradiction. Thus (a) holds for Siy;.

We now show (b) holds for S"f*‘l' Let r € N\Sk41 with d. > 0. Let P,
be the path with the largest traversal probability for a path from s to r in
which all nodes except r lie in Sy, and let that probability be ps. Let u be
the last node of Sy, oxi P,.

Case 1. Supposé that before i was selected, d, = —1. Then after i; was
selected, the only paths from s to r with nodes except for = lying entirely in
Sk+1 have iy and r as the last two nodes and (b) holds for r.

Case 2. Suppose that before iy was selected, d, > 0. Thus before i} was

selected, since (b) holds for Sk, d, was the largest traversal probability for a
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path from s tor iﬁ which all nodes except r lie in Sk. Let p- be the value of

d, at that point.

Subcase 2.1. Assume u is #;. Then py = d;,p;,-. Thus following the ad-
justment to d, after ¢; was selected d, = py since p4 is the largest probability
path and (b) holds for Skys.

Subcase 2.2. Assume u is not %, but is some other node j € Siy41. Thus

P, will not contaiﬁ i and no adjustment was made to d, after ¢; was selected,

so that d. = p. and (b) holds for Sk41.

3 The Safe Corridor Algorithm

" For applications in the area of strike planning, there are many alternate
optima. In addition, there are many paths that come very close to being
optimal. The set of nodes which appear in near-optimal safe paths is called
the safe corridor.

The safe corridor algorithm coﬁstructs two safest path trees, T} and T5.
Ty records the safest path from s to a.ny node in its tree, and T, records

the safest path from ¢ to any node in its tree. All nodes in the graph are
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initially assigned a negative probability of successful arrival from the source
and from the destination. Some nodes may not be updated with non-negative
probabilities, but all nodes near a safest path will be updated.

For any node j, let §; denote the greatest probability of successful traver-
sal from node j to the destination, t, let f; denote the predecessor of node
7 in T, and let {; denote the set containing the current nodes in T; at it-
eration k. The greatest probability of successful traversal from the source
to the destination via node j is d;§;, where d; and §; are the safest route
probabilities from s to j and from j to t, respectively, and have been updated
with nonnegative probabilities. For any node i along the safest path from
s to t, dib; = d;. Also &, = d,, since p,-j>= pji. U d;6;/d; is very close to 1,
then node j is not on a safest path, but the probability of successful traversal
from s to t via j is almost as great as that of a safest path. Hence, a safe
corridor can be genera.te& by including all nodes j for which d;§; is within a
given range near d;.

The safe corridor C C N is determined by a parameter R < 1. f R =1,
then every node in C is on some optimal path from s to t. If R = 0.9, then
the nodes in C are on paths whose traversal probability is at most 10% less

than the probability of the safest path. If R = 0, then C = N. The algorithm
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is given as follows:

Algorithm : safe corridor
Inputs : N, A, s,t,p;, R

Outputs: C

So—0; k0
dj — -1, éje—-lforalljeN;
ds —1; b0 &1, PO
while t € S, do
begin
select it € N\S, such that Vje N\Si, di, > d;;
Sk41 — Sk U {}; ke—k+1;
for all j € N\S; s.?ch that (i, 7) € A do
begin ;
if d; < di,p;,; then d; «— d; pij;  b; & ix;
end;

end;

Co*—@; k0
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while s € (x do
begin
select hy € N\(i such that Vj € N\(x, &n, 2 6j;
Crr1 < G U {h}; k—k+1
for all j € N\(; such that (j,hx) € A do
begin
if §; < 8y, pin, then & — 6n,pjn;  Bi = hu
end;
end;
C «0;
foralljeN
begin
if d;6; > R(d,) then C « CU{j}
end;

end;

The value of R must be carefully chosen for each problem. A value too
close to 1 can exclude valuable options. However, as the value of R is reduced,

the safe corridor can very quickly expand to include a large portion of the
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grid.

4 The Two-Dimensional Strike Planning

Problem on a Grid Graph

Strike planning for cruise missiles involves finding a flight path through
a combat theatre that involves threats. The most serious threat for a cruise
missile is an air defense system consisting of 2 search radar, a fire-control
radar, and a SAM weapon (see [19]). The effectiveness of the SAM system -
depends on the total amount of time it has to engage and destroy the cruise
missile. The search radar is usually always active, while the fire-control
radar only becomes active when needed. The search radar spends some time
in determining if a missile detect is real or is a false alarm. A cruise missile
flies at low altit;lde in an attempt to avoid detection. The fire-control radar
is turned on only after search radar personnel decide that they have a real
target. There is some warmup required and some time needed to aim and
fire the SAM. The less time a cruise missile spends near one of these sites,

the higher the probability of mission success.
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For this application, we lay a grid over the area and form a grid graph
[N, A]. The points s € N and t € N are the grid points nearest the missile
and target, respectively. The traversal probabilities are related to the loca-
tion of the threats. Given R < 1, the objective is to determine C C N, the
safe corridor through [N, A].

To demonstrate the safe corridor algorithm. we developed a random prob-
lem generator. Each interior point in the grid has degree 8 as illustrated in
Figure 1. The missile is randomly placed on the left vertical boundary and
the target is randomly placed on the right vertical boundary.” The SAM
systems are placed at random nodes in [V, 4]. Three test problems and
th¢ corresponding safe corridors are illu;t»rated in Figures 2, 3, and 4. The
traversal probabilities are in the interval [0.1. 0.99]. Probabilities within a
threat region (determined by the distance to the fire-control radar) are pro-
portional to the distance from the midpoint of an edge to the ﬁre—.control
unit. Horizontal a.na vertical edges which are outside threat regions have
traversal probabilities of 0.99. Diagonal edges have traversal probabilities of
0.985. Hence, traversing a diagonal arc is slightly safer than traversing one

horizontal and one vertical arc connecting the endpoints of the diagonal arc. -
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Figures 1 through 4 about here

5 Summary and Extensions

This manuscript presents a new graph problem which we call the safest path
problem. A Dijkstra-like algorithm for this problem is presented along with
a correctness proof. This work was motivated by the problem of developing
strike plans and we demonstrate how our algorithm can be used to develop
safe corridors on two-dimensional grid graphs.

The work presented in this manuscript can be extended to three dimen-
sions. Even though the algorithm is very fast, problem size could eventually
lead to excessive computation time. It is also the case that repeated flights
over a threat may cause threat personpel to become more alert so that the
second flight near a threat may have a lower probability of successful traver-
sal than the first. Planning for multiple strikes would need to account for

this. A description of this problem along with solution approaches may be

found in (4, 20].
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Grid —Free Algorithms for Mission Planhing
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Abstract

The problem of mission planning for a cruise missile in two dimensions can
be viewed as a mathematical problem in the area of computational geometry
in which we seek a path composed of a set of line segments from a given
missile location to a given target location which does not pass through any
SAM radar site. The shortest path requiring the fewest number of turns is
most desirable. Two algorithms for this problem have been developed and

compared in an empirical study.
Acknowledgement
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1 INTRODUCTION

For this investigation, we classify a missile as a cruise missile if its speed is
sub-sonic, it uses a built-in global positioning navigation system (GPS/INS),
and its range is at least 300 miles. A specific mission for a cruise missile
is programmed by simply specifying a sequence of coordinates. The missile
uses its on-board computational facilities and its GPS/INS system to guide it
through this sequence of points. At present, once a cruise missile is launched,
its mission cannot be modified.

A cruise missile can be destroyed in flight by a SAM air defense system
consisting of three components: a search radar, a fire-control radar, and
a SAM weapom. A complete description of this system may be found in
Zuniga and Gorman [7]. According to Zuniga and Gorman, the effectiveness
of the SAM system depends on the total amount of time it has to engage
and destroy the cruise missile. The search radar only becomes active when
needed. Some time is spent to determine if a missile detect is real or false.
If the detect is determined to be real, then the fire-control radar is turned
on to aim and fire the SAM. The search radar has the same effective range

which is represented by a circle in two dimensions.
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Mission planning for a single cruise missile involves constructing a flight
path from a given origin to‘a. given destination through a combat theatre
having SAM sites. In two dimensions, the SAM sites are represented as
circles and the objective is to find a set of line segments linking the origin to
the destination which do not pass through any SAM threat circle.

Most research investigations in the area of mission planning begin by plac-
ing a grid over the combat theatre and ‘applying a modification of Dijkstra’s
algorithm (see [2]) to obtain a safe path from the origin to the destination
(see 1, 3,4,5,7, 8]). There are two disadvantages to this approach. The grid
graph can become very large, particularly for the three-dimensional case, and
consequently the algorithms can be very time consuming. Also, the resulting
paths may involve too many line segments. A path with only a few line seg-
ments is viewed as better than one with many line segments. The objective
of this investigation is to present new algorithms for mission planning that

do not require the use of a grid.
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2 THE MISSION PLANNING PROBLEM

The problem of finding a feasible mission plan can be defined mathematically
as follows:
Given two points M and T € R? and K circles each with center
X1, .., Xk € R? and radii rq, ..., 7x; find a set of line
segments [Y,Y3], (Y, Y3), ..., [Vs, Ys4a] with ¥; = M and
Ys41 =T such that no line segment intersects any circle.
A feasible mission plan through a theatre having five SAM sites is illustrated
in Figure 1. The quality of a mission plan is measured by the length of the -
path and the number of segments. The best path is the straight line from
M to T. If this is not feasible, then we seek a short path with only a few

segments.

Figure 1 about here
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3 MISSION PLANNING ALGORITHMS

In this section, two new algorithms are presented for solving the two-dimensional

mission planning problem. The projection algorithm begins with a set of line
segments linking M to T. If the segments intersect any of the threats, then
by projecting the center of the threat circles onto the nearest line segment,
new line segments can be constructed which usually avoid the threats. The
circumscribed triangle algorithm creates paths around the threats by creat-
ing triangles which enclose the threats. The paths are constructed by linking

the edges of these special triangles.

3.1 The Projection Algorithm

The projection algorithm begins with one or more line segments linking M
(the missile) to T' (the target). If this is feasible, then the algorithm termi-
nates. Otherwise, additional break points are created to guide the missile
around the threats. The line segment [M, T'] illustrated in Figure 2 has been
deflected around the threat by adding a break point between M and T.
Let X, denote the center of the threat circle with radius r;. Let Z be the

projection of X; onto the line segment [M,T]. Let W be a new point ob-
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tained by moving from X; in the direction Z — X to a point slightly beyond

the circle. The new path is [M, W] [W,T].

Figure 2 about here

Deflecting a path around a threat can result in the new path passing
through a different threat as illustrated in Figure 3. This requires another
application of the projection procedure. By continuing in this way, we can
in most cases obtain a set of line segmenté that link M to T and avoid all of

the threats.

Figure 3 about here

The basic algorithm is called projector and the algorithm is defined as follows:
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Algorithm : projector

Inputs :
M - missile location
T - target location
K - number of threats
Xi,..., X - center points of the threats
T1,...,Tx - radii of the threats
L - number of segments in the initial path
I, ..., Iy - the initial path
Outputs :
S - number of segments in solﬁtion
Yi, ..., Ysi1 - the points in the solution path
begin

Y, —I,fors=1,..,L+1;
s—1ke1,5«L;
while (s £ §) do
begin
Z « project (Xx,Ys,Yer1);

if (Z is on the line segment [Y;, Y,41]) then
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begin
if (distance (Z, X;) < r¢) then
begin
W — Xi + 1.1(re)(Z — Xi)/distance (Z, X})
fori=S+1tos+1doYy « Y
Y1 W, S S +1,s—1,k 0
end;
end;
ke—k+1,;
if (k >K) then k « 1, s « s+ 1;
end;

end;

procedure distance (U, V)
begin
return the Euclidean distance from U to V;

end;
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procedure project (R, U, V)
begin
return the projection of R onto the line defined by points U and V;

end;

It is possible for Z to equal Xj so that Z — X = 0. When this occurs,
we perturb Z slightly in the y-coordinate direction. Also, since the threats
overlap, we sometimes obtain a path with zig-zagging which intersects with
one or more circles. At the conclusion of project, we call a scrubber procedure
which removes points which appear insi.de a circle. This is illustrated in

Figures 4 and 5.

Figures 4 and 5 about here

To obtain a path, we initialize I, ..., Ir4+1 With a set of values, run pro-
jector followed by the scrubber. We compare the path obtained with the

shortest feasible path found so far and retain the shortest feasible path. The
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middle or direct path is obtained by setting I; to M, I to T, and L to 1.
The high path attempts to find a path such that all threats are below this
path. For this path, I, is set to the center of the circle first encountered
when we sweep clockwise a line segment anchored at M from the vertical po-
sition. Let X} denote this point and set I; to Xj. This can be accomplished
by examining the slopes of the line segments [M, X;] and selecting the one
with the largest slope. The point I3 is set to the Xx first encountered when
we sweep counter-clockwise a line segment anchored at T from the vertical
position. Finally, I, is set to T' and L is set to 3. These starting segments
generally result in a path with every threat below the path. A low path can
be constructed in a similar manner by médifying the selection routine for I,
and I3. A middle high path is generated by selecting I to be on the line

segment [M, X;]). A middle low path is constructed in a similar manner.

3.2 The Circumscribed Triangle Algorithm

The circumscribed triangle algorithm starts at M (the missile location) and
constructs line segments by moving from a given segment point tangentially

to the circumference of nearby threat regions, until a suitable straight-line
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path from a segment point to T' (the target location) is found. This basic
strategy is embedded in a branch-and-bound framework, so that a minimal
distance path of this restricted type is obtained.

In this algorithm we allow the missile to intersect a point on the circum-
ference of a threat region but do not allow the missile to fly through any
interior point of a threat region. Further, we allow a limit to be placed on
the turn angle at any segment point, since a missile is unlikely to be making a
sharp turn of, say, 90° or more at such a point. (Given segments [Y;_;, Y] and
[Y;, Yi41], the turn angle at segment point Y; is defined to be the complement
of angle Y;_1Y;Yi1.)

Let d(E, F) denote the Euclidean disfance between points E and F. The
basic step in proceeding from segment point Y; tangentially to a (nearby)
threat region By = {s : d(Xk,s) < rx} involves constructing the circum-

scribing triangle on R, having one vertex at Y; (see Figure 6).

Figure 6 about here

The tangential points in Figure 6 are Ty , T, and T3 and the vertex points
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are Y;, Vi, and V5. Sides Y;V; and YV, are the equal sides of the (isosceles)
circumscribing triangle. Tangential point T3 is easily computed since it lies
on the line through Y; and X with d(Xj,T3) = rx. To compute the other
points we make use of a result from elementary geometry which states that

the radius r of a circle inscribed in a triangle with sides a, b, and ¢ is given

by

\/s(s —a)(s =b)(s~¢)

S

where s = J(a+b+c).

Letting a = d(¥;,V4), b = d(Y;,V2), and ¢ = d(W},V2) with @ = b, a
one-dimensional search on the value of ¢ can be used to produce a value of
r = 1. From this ¢ value, points V; and V; can be determined. Points Tj
and T can then be computed as the nearest points to X on Y;V; and Y; V3,
respectively.

We intend to make use of these tangential lines to construct the next
segment, if possible. Before using points on either tangential line, we first
make sure that the respective turn angles at Y; would be within the turn
angle limit.

The points V] and V; have a special property. Each is the first point on the
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tangential line from Y; through itself which has a complete 180° field of view
(ignoring turn angle constraints) of the side of Ry opposite Y;. By contrast,
tangent points Ty and T; each have less than a 90° field of view (ignoring
turn angle constraints) of that side (see Figure 7). With this in mind V; (or
V») would seem to be a good choice for the end point of a next segment in
our path construction. We actually attempt to use a point between T and
Vi (or between T; and V;) for the next end point. In general, such a point
can be represented as a convex combination Yiy; = (1 —«a)Th +aV) (or
Yisp = (1—-a)To+ aVe ), for some 0 < @ < 1. In order for such a point
Yi41 to be usable, we must insure that the segment [¥;, Yis1] is clear. (A line
segment is defined to be clear if it does ﬁot intersect the interior of any of
the threat regions.)

We first search for a minimum value of a with 0 < a < 1 such that
[¥;, (1 — )Ty +aW] (or [Y;, (1 — )Ty +aVs] ) is clear and [(1 —a)T1 +aW, T
(or [(1 — @)T; 4+ aV,, T} ) is clear without exceeding the turn angle limit at
(1 — )Ty + aW; (or (1 — )Ty +aVs ). If such a point is found we have a
feasible completion by adding the two segments [Y;, Yiy1 = (1 — @)Th + o]
and [Yip = (1 — @)1y + aW, Yige = T) (or [V;, i1 = (1 — @)T2 + aV,] and

Yis1 = (1 — o)z + aVa, Yiye = TY).
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If such a point leading to a feasible completion cannot be found, it would
seem natural to use V; (or V3) by default, due to its wide field of view.
However, in practice this leads to longer paths and we find it better to use
a point between T; and V; (or between T; and V3) for the next end point.
We have parameterized this by defining a backoff percentage B which specifies
that, in this case, Y; is to be chosen as the convex combination (1—-3)T1+ V1
(or (1 — B)T> + BV, ). Experimentally, we have found § = 1 to be a good

choice.

Figure 7 about here

The branch-and-bound algorithm we have developed based on this cir-

cumscribed triangle approach is given as follows:

Algorithm :circumscribe

Inputs‘:
M - missile location
T - target location
K - number of threats
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X1,y Xx

Outputs :
D
S
Ly,...,Ls
Constructs :
B
Q
d(E, F)
L(E,F) .
R(C,r)

S(C,r)

center points of the threats
radii of the threats
turn angle limit (degrees)

fall back parameter (0 < f < 1)

length of best constructed solution path
number of segments in best constructed solution path

segments of best constructed solution path

pointer to last point in best constructed solution path
branch-and-bound queue

distance from E to F

line segment from E to F

threat region with center C and radius r

interior of threat region with center C and radius r
number of points constructed

i** constructed point

pointer to point previous to Y;
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o
D; - path distance prior to Y;
® S; - path segments prior to Y;
E; - set of threat points eligible for moving away from point ¥;
° 7,13, T3 - constructed tangent points of circumscribled triangle
Vi, Va - constructed vertices of circumscribled triangle
o
begin
D o0; S—0; B0
o if L(M,T)NS(X;,r;) =® for i=1.K then
D —d(M,T); S« 1; L, «[M,T);
else
L
begin
I'—1; Ve M; B, 0, D «0; Sy —0; Ey « {Ry,...,Rx};
i put (Y1, By, Dy, 51, Ey) on Q;
while @ # @ do
° begin

remove some (Y;, B;, D;, S;, E;) from Q;

b~ B;




select some R; from E;; E; « E;\ R;;
if E; # @ then put (Y;, B;, D;, S;, E;) back on Q;
form the triangle Y;V41V, circumscribing R; having
its tangent points Ty € YW1, Tz € YiV,, T3 € V1 V5;
for k=1 to 2 do
begin
if 180 - VYT, < Z and
LY, T,)NnS(X;,m) =% for I=1.K and
D; + d(Y,,Ty) + d(Ty, T) < D then
begin
search for a point U on L(T%, Vi) nearest to T satisfying:
180 - Y;UT < Z and
LY, U)nS(X;,m)=® for I=1..K and
LUT)NnS(X;,m) =@ for I=1.K;
if such a point U exists then
begin

if D; + d(Y;,U) 4+ d(U,T) < D then
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®
begin
g I—I+1;
Y; «U; Br—1; D+ D;+d(Y;,U); Si« Si+1;
meI; I —I+1;
o
Y «T; Bie—m; Di+ D, +d(U,T); St S;+2;
D« Dy S8, Be1I;
® end;
else
° begin
ifE,-#‘I)then
begin
o U e (1-B)Ti + BV
if L(Y;,U)nS(X;,r)=® for [=1..K then
® begin
I—T+1;
Y1 « U; B+ DI(—D,'-i-d(Y,',U); Sy~ S;+1;, Er — E;
®
|
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put (Y7, By, D1, S1, Er) on Q;
end;
end;
end;
end;
end;
end;

end;
1 S5; k+ B;
while k#0do j« By; Li — [V, Yi]; i —i—1; k3

end;

Figure 8 shows an optimal path through a region containing three threats
generated by the circumscribed triangle algorithm. Figure 9 shows additional
partial paths produced by the branch-and-bound process contained in the
algorithm. The actual implementation, whose results are reported in Section
IV, actually makes two applications of the algorithm, the second of which has

the roles of missile and target reversed. Of course, any path obtained with
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missile and target reversed would itself need to be reversed. The shortest of

the two paths generated is selected as the best path.

Figures 8 and 9 about here

4 EMPIRICAL ANALYSIS

Using a grid size of 780 x 700, we randomly generated five groups of test
problems. Each group had five SAM sites with radii randomly generated on
the interval {50, 150]. The four problerﬁs in each group had identical SAM
sites, but different missile and target locations with the missiles located on
the left boundary and targets located on the right boundary. The missile
and target locations were randomly selected and were different for each of
the twenty test problems. The input for each problem consists of seven points
(the missile location, the target location, five SAM sites) and five radii.

A graphical system was developed using Tcl and Tk (see Welch [6]). Tcl
stands for Tool Command Language and Tk is a toolkit for window pro-

gramming. The system allowed us to display the problem graphically and
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construct a path manually by simply pointing and clicking. This system was
used to manually construct solutions for each of the twenty test problems.
Both the projection and the circumscribed triangle algorithms were also ap-
plied to each of the test problems. The results are summarized in Table 1.
The manual paths tended to steer clear of the SAM sites and use only a
few segments at the penalty of substantially longer paths. The projection
algorithm generated relatively short paths at the expense of substantially
more segments. The circumscribed triangle algorithm worked best, using a
small number of segments and producing very short paths. The paths ob-
tained manually and by the projection algorithm may be found in Figures 10
through 14 in Appendix A. The paths obtained by the circumscribed triangle

algorithm may be found in Figures 15 through 19 in Appendix B.
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Table 1. Comparison of Three Procedures for the Mission Planning Problem

Manual Projection Alg Circumscribed Triangle Alg
Distance | Segments | Distance | Segments | Distance Segments
1 1000 2 959 3 957 3
2 1002 3 853 5 853 3
3 998 4 948 5 853 4
4 1040 3 946 4 945 3
5 826 2 798 2 795 2
6 934 4 881 4 878 4
7 1097 2 1043 4 1042 3
8 813 2 807 2 805 2
9 802 2 784 2 782 2
10 1107 3 1054 4 1049 3
11 870 3 852 3 847 3
12 839 2 823 2 820 2
13 822 2 811 2 810 2
14 1030 3 946 5 945 3
15 1039 3 961 5 966 3
16 877 3 839 3 837 3
17 911 3 864 4 865 3
18 1064 3 1014 4 1009 3
19 1013 4 974 4 900 4
20 900 3 855 3 862 2
Totals | 18,984 56 18,012 70 17,820 o7
Scaled | 1.07 0.98 1.01 1.23 1.0 1.0
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5 SUMMARY AND CONCLUSIONS

This manuscript presents two algorithms for the mathematical problem of
finding a path consisting of line segments from a given origin to a given
destination which does not pass through any of a set of threats represented by
circles. Neither algorithm requires the use of a grid imposed on the military
theatre which is required by the competing algorithms of which we are aware.

The projection algorithm initially ignores the threats and constructs a
path from the origin to the destination. Let [Y;,Y;;1] denote the line seg-
ment defined by endpoints Y; and Y;y;. If [}, Yiq1] passes through a threat
whose center is X, then X is projected onto [Y;,Y;;1] to obtain Z. It next
finds a point W outside the threat on the line defined by Z and X. The
original segment [Y;, Y;;1] is replaced by two segments [Y;, W] and [W, Yi14].
Continuing in this way usually leads to a feasible path.

The circumscribed triangle algorithm constructs triangles around the
threats and selects break points on either the upper or lower edge of these
circumscribed triangles. Hence, from the origin there are two potential paths
around a threat (the upper path and the lower path). From each of these

paths there may be additional threats from which we consider both the up-
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per path and the lower path. This combinatorial feature of the strategy is
handled in a branch-and-bound framework.

In an empirical analysis with twenty randomly generated test problems,
we found that the circumscribed triangle algorithm consistently produced
paths which were superior to those obtained either manually or by the pro-
jection algorithm. Also, our software implementation is so fast that this

algorithm can be run on a PC in a real-time environment.
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APPENDIX A
SOLUTIONS USING PROJECTION ALGORITHM

This appendix presents a graphical display of the twenty randomly generated
test problems along with the mission obtained manually and the mission
obtained by the projection algorithm. The black line is the mission obtained

using projector and the gray line is the mission obtained manually.

Figures 10 to 14 about here

B~29



APPENDIX B
SOLUTIONS USING THE CIRCUMSCRIBED
TRIANGLE ALGORITHM

This appendix presents a graphical display of the solutions produced by the

circumscribed triangle algorithm.

Figures 15 to 19 about here
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Missile

Figure 1: Illustration of a Feasible Mission Plan Through a Theatre Having

Five SAM Sites




Figure 2: Deflection of a Path Around a Threat




0@

Figure 3: Path Deflection Which Intersects with a Different Threat
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Figure 4: Results from Find Path for Overlapping Circles
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Figure 5: Path Obtained After Scrubbing the Path in Figure 4
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Figure 6: Circumscribing Triangle With Vertex Y; For Threat Region Ry
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Figure 7: Opposite Side Field Of View At Points Vi, V5,11, T
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Figure 8: Path Produced by the Circumscribed Triangle Algorithm
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Figure 9: Partial Paths Considered by the Circumscribed Triangle Algorithm
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Problem 1

Problem 2

o Problem 3

Problem 4

Figure 10: Display of Problems 1, 2, 3, and 4

B-40



Problem 5

Problem 6

Problem 7

Probiem 8

Figure 11: Display of Problems 5, 6, 7, and 8
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Problem 9 Problem 10

Problem 11 Problem 12

Figure 12: Display of Problems 9, 10, 11, and 12
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Problem 13 Problem 14

Problem 15 Problem 16

Figure 13: Display of Problems 13, 14, 15, and 16
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Problem 17 Problem 18

Problem 19 Problem 20

Figure 14: Display of Problems 17, 18, 19, and 20
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Problem 1 Problem 2

Problem 3 Problem 4

Figure 15: Display of Problems 1, 2, 3, and 4

B-45



Problem 5 Problem 6

Problem 7 Problem 8

Figure 16: Display of Problems §, 6, 7, and 8
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Problem 9 Problem 10

Problem 11 Problem 12

Figure 17: Display of Problems 9, 10, 11, and 12
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Problem 13 Problem 14

Problem 15 Problem 16

Figure 18: Display of Problems 13, 14, 15, and 16
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Problem 17 . | Problem 18

Problem 19 Problem 20

Figure 19: Display of Problems 17, 18, 19, and 20
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Planning with a Probability Restriction
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Abstract

By representing threats as circles, the problem of mission planning for a cruise
missile can be viewed as a computational geometry problem in which we seek
a path composed of line segments from a launch site to a target site which
skirts selected threats. In a previous investigation, we presented an effective
algorithﬁ of this type, called the circumscribed triangle algorithm. In this
investigation, we extend the circumscribed triangle algorithm to incorporate
a side constraint on the probability of a successful traversal. This allows the
missile to take short cuts through threat .areas, as long as the probability of
success meets some user-specified criteria. In an empirical study on twenty

randomly generated test problems using probabilities of 90%, 75%, and 60%,

we found that the new algorithm works extremely well.
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1 INTRODUCTION

The cruise missile has recently become one of the Navy’s most important
weapon systems. During recent conflicts in the Persian Gulf, ship and subma-
rine launched cruise missiles have been used extensively with great success.
Targets which may be hundreds of miles inland can be attacked by these
Navy weapons stationed in relatively safe positions offshore. In addition,
cruise missiles can be used to disable SAM sites, making manned aircraft
strikes substantially safer.

A mission for a cruise missile is defined as a path from a launch area to
the target. The job of the mission planner is to determine the path that the
missile will follow and program the missile with the appropriate waypoints
and any TERCOM maps that will be used. A mission does not have to
include TERCOM maps, but they can be used as part of the navigational
package. Some missions involve only GPS waypoints.

Using current technology, missions are developed using a two-step process.
In the first step, a mission planner uses a two-dimensional map to manually
select a path from the launch site to the target. A software system enhances

the path to include the vertical dimension and develops an estimate of the
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probability that the mission will be successful. This process may be repeated
several times until the mission planner is satisfied with the mission plan.
Since a cruise missile costs approximately $650,000, the probability of success
of a given mission is an important consideration for Navy management.
Several research groups have attempted to develop automatic methods to
replace the manual part of the two-step approach. Most of these groups begin
by placing a grid over the combat theatre and then applying a modification
of Dijstra’s {2] algorithm to obtain a path from the origin to the destination
(see [1, 3, 5, 6, 8, 9]). Unfortunately, the grid can become very large and

consequently the software can be fairly slow. In addition, the resulting path

can involve numerous line segments.

In [4], the authors developed an effective algorithm for mission planning
that does not involve the use of a grid. The threats are modelled as circles
on a two-dimensional map, and the objective is to obtain a shortest path
from a given origin to a given destination which does not pass through any
threat circle. The circumscribed triangle algorithm constructs line segments
by moving from a given segment point tangentially to the circumference of
nearby threat regions, until a suitable path from origin to destination is

found. In an empirical study, the algorithm always obtained a very good
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mission plan.

The objective of this investigation is to incorporate a probability con-
straint into the circumscribed triangle algorithm. This allows for more re-
alistic mission plans which fly through threat regions on their path to the
target while maintaining a user-specified probability of success. The benefit
of this extension is determined empirically on a test suite of twenty randomly-

generated problems.

2 THE MISSION PLANNING PROBLEM

In this work, a threat is represented by a circle with a given center X and a
given radius r. Let Z denote the point along the mission plan at which the
missile is nearest X. If ||Z — X|| > r, then the threat at X is too far away to
harm the missile and the probability of a successful traversal is defined to be
1. Otherwise, some function p(Z, X,r) is used to determine the probability
of a successful traversal. When there are multiple threats, the probability of
a successful traversal is the product of the probabilities along each segment,
taking into account all of the threats.

The problem of finding a feasible mission plan which incorporates a prob-
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ability constraint, can be defined mathematically as follows:

Given a target probability P, two points M and T € R?, and K

circles, with centers X, ..., Xx € R? and radii ry, ..., g,

find a set of line segments [V}, Y2), [Ya, Ya),..., [¥s, Ysia),

with Y1 = M and Y54y = T, such that the probability of a

successful traversal is at least P.
The quality of a mission plan is measured by the length of the path and the
number of path segments. The best path is the straight line from M to T. If
this is not feasible (i.e. the probability of a succcessful traversal is less than

P), then we seek a short path having only a few segments.

3 THE ALGORITHM

The probabilistic incursion triangle algorithm allows the missile to fly through
the interior of a threat region and employs a probability model to compute
the probability of survival for a path from the missile location M to the tar-
get location T' which consists of line segments which may either be tangent
to a circular threat region or cut through the region (an incursion).

The algorithm operates within the same branch-and-bound algorithmic
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structure used in the circumscribed triangle algorithm (see Section 3.2 of
[4]). The major differences are (1) when attempting to construct a new
segment by approaching a threat region from a previous segment endpoint,
several equilateral triangles passing through the threat region in addition to
the circumscribed triangle may be considered, and for each such triangle,
potentially two points ére added to the branch-and-bound queue, and (2) in
searching for a final segment linking a previous segment endpoint to the tar-
get, that segment may intersect threat regions (with a consequent reduction

in survival probability).

3.1 The Probability Model

For threat region k with center X; and radius r, the probability model
assumes that the probability of survival of a line segment approaching a
threat region is a function only of the minimum distance from the segment
to X. Further, the model assumes independence so that the overall survival
probability for a path is the product of the survival probabilities for each
segment in the path.

For developmental purposes we have hypothesized a crude probability

C-3




function which is a quadratic of the form
Pr(d) = ad®+c,

where for threat region k,

Pr(ri) = .99 and Pr(0) =.50 .

3.2 Incursion Triangles

Figure 6 illustrates a circumscribed triangle YiV;V, and an incursion trian-
gle Y;Q1Q; for a common threat region R;. In the circumscribed triangle
algorithm, with respect to the segments Y;¥; and Y;Vj, the line segments
T,Vi and T3V, are searched first for a cle;ar completion segment to the tar-
get, before the points ¥} and V; are added to the branch-and-bound queue.
This also occurs in the probabilistic incursion triangle algorithm, but the
completions can intersect threat regions if the total survival probability is at
least P and the segments Y;V; and Y;V; will each have survival probability
.99. Also, in the probabilistic incursion triangle algorithm, with respect to
the segments Y,-Ql and Y;Q)2, the line segments P;@Q; and P,Q, are searched
first for a completion to the target with total survival probability at least P,

before the points V; and V; are added to the branch-and-bound queue.
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The number of incursion triangles considered in approaching a threat
region from a previous segment endpoint depends on the accumulated number
of segments and an adjustable parameter S which is roughly interpreted as
the expected number of segments in an optimal path. In the testing described
in Section 4, S was set at 3. If S; is the number of segments in a partial
path from the missile location to segment endpoint ¥; and P; is the survival
probability of this partial path, incursion triangles with individual segment

survival probabilities of

99(P/P,) .99( P/P; ) L .99( P[P, )

: 5-S

will be considered, unless these probabilities are very close to .99.

4 EMPIRICAL ANALYSIS

The twenty test problems presented in [4] were solved using P = 90%,
P = 75%, and P = 60%, and the results are summarized in Table 1. The
deterministic algorithm is the circumscribed triangle algorithm described in
[4]. Note that setting P = 60% subsantially reduces the number of way-
points, but only reduces the total distance by 4%. The paths obtained by

the deterministic algorithm and the new algorithm with P = 60% may be
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found in Appendix A. For most problems, the two paths are similar, with
the new algorithm taking short cuts through one or more threats. Problem 7
illustrates a case where the new algorithm selects a completely different path.
For this problem, the deterministic algorithm produces a path in which all
threats are above the path, while the new algorithm uses a mixed strategy.
The deterministic strategy is unable to use a single straight line for any of
these test problems, whereas the probabilistic algorithm finds this to be best
for several of them. Based on these results, we believe that this approach
could be used in the development of a grid-free auto-router, incorporating a

probabilistic side constraint.
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Table 1. Comparison of Probabilities for the Mission Planning Problem

Prob | Deterministic Probabilistic Algorithm
Algorithm 90% 5% 60%
Dist | Segmts | Dist | Segmts | Dist | Segmts | Dist | Segmts
1 957 3 955 3 952 3 949 3
21 853 31 849 3 842 3 834 3
3 853 41 851 3 843 3 803 3
41 945 3 939 3 925 3 905 3
5 795 2 794 2 789 2 783 2
6| 878 4| 876 4 868 4| 857 4
7| 1042 3| 1040 3| 1031 3| 1012 3
8 805 2| 805 2 804 1 804 1
9 782 2 782 2 780 2 780 1
10 | 1049 3| 1044 3| 1031 31| 1012 3
11 847 3| 845 3 838 3] 835 2
12 820 2 819 2 817 2 815 1
13 810 2 809 21 807 21 807 1
14| 945 3| 942 3| 861 3 809 2
15 966 3 962 3 950 3 780 2
16 837 3 837 3| 83 3 835 1
17 865 3| 857 3| 848 3 825 3
18 | 1009 3| 1005 3 994 3 977 3
19 900 4| 895 3| 882 3| 857 3
20 862 2| 851 3| 837 2| 820 3
Totals | 17820 5T | 17757 56 | 17534 54 | 17099 47
Scaled 1.0 1.0 | 0.996 | 0.982 | 0.984 | 0.947 | 0.960 | 0.825
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o
APPENDIX A

° SOLUTIONS
This appendix presents a graphical display of the twenty test problems along

® with the solutions obtained by the deterministic algorithm and the prob-
abilistic algorithm. The black line is the solution obtained with a P set to
60% and the gray line is the mission obtained by the deterministic algorithm.

o The plots were obtained using Tcl and Tk Solver [7], which is part of our
experimental computational package.

L

o

®
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Problem 1 Problem 2

Problem 3 Problem 4

Figure 1: Display of Problems 1, 2, 3, and 4
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Problem 5

Problem 6

Problem 7

Problem 8

Figure 2: Display of Problems 5, 6, 7, and 8
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Problem 9 . Problem 10

Problem 11 Problem 12

Figure 3: Display of Problems 9, 10, 11, and 12
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Problem 13 Problem 14

Problem 15 Problem 16

Figure 4: Display of Problems 13, 14, 15, and 16
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Problem 17 ) Problem 18

Problem 19 Problem 20

Figure 5: Display of Problems 17, 18, 19, and 20
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Figure 6: Circumscribing Triangle and Incursion Triangle with Vertex Y; for

Threat Region Ry
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